Generalized Kähler structures on group manifolds and T-duality
نویسندگان
چکیده
منابع مشابه
Kähler (& Hyper-kähler) Manifolds
These notes are based on two talks given at the Arithmetic & Algebraic Geometry Seminar of the Korteweg-de Vriesinstituut for mathematics of the Universiteit van Amsterdam. They are intended to give a short introduction to the theory of Kähler manifolds, with a slight focus of applicability to the subject of K3 surfaces. However, they also include other interesting results not related to K3 sur...
متن کاملHypercomplex Structures on Group Manifolds
We study deformations of hypercomplex structures on compact Lie groups. Our calculation is through the complex deformation theory of the associated twistor spaces. In general, we nd complete parameter spaces of hypercomplex structures associated to compact semi-simple Lie groups. In particular, we discover the complete moduli space of hypercomplex structures on the product of Hopf surfaces.
متن کاملGeneralized Geometry, T-duality, and Renormalization Group Flow
We interpret the physical B-field renormalization group flow in the language of Courant algebroids, clarifying the sense in which this flow is the natural “Ricci flow” for generalized geometry. Next we show that the B-field renormalization group flow preserves T-duality in a natural sense. As corollaries we obtain new long time existence results for the B-field renormalization group flow.
متن کاملOn some generalized recurrent manifolds
The object of the present paper is to introduce and study a type of non-flat semi-Riemannian manifolds, called, super generalized recurrent manifolds which generalizes both the notion of hyper generalized recurrent manifolds [A.A. Shaikh and A. Patra, On a generalized class of recurrent manifolds, Arch. Math. (Brno) 46 (2010) 71--78.] and weakly generalized recurrent manifolds ...
متن کاملSymplectic and Kähler Structures on Statistical Manifolds Induced from Divergence Functions
Divergence functions play a central role in information geometry. Given a manifold M, a divergence function D is a smooth, nonnegative function on the product manifold M×M that achieves its global minimum of zero (with semi-positive definite Hessian) at those points that form its diagonal submanifold Mx. It is well-known (Eguchi, 1982) that the statistical structure on M (a Riemmanian metric wi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of High Energy Physics
سال: 2018
ISSN: 1029-8479
DOI: 10.1007/jhep05(2018)189